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Summary

Recently, BRowN, HWANG, and MuUNK (1998) proposed and unbiased test for the average equivalence
problem which improves noticeably in power on the standard two one-sided tests procedure. Neverthe-
less, from a practical point of view there are some objections against the use of this test which are mainly
adressed to the ‘unusual’ shape of the critical region. We show that every unbiased test has a critical region
with such an ‘unusual’ shape. Therefore, we discuss three (biased) modifications of the unbiased test. We
come to the conclusion that a suitable modification represents a good compromise between a most power-
ful test and a test with an appealing shape of its critical region. In order to perform these tests figures are
given containing the rejection region. Finally, we compare all tests in an example from neurophysiology.
This shows that it is beneficial to use these improved tests instead of the two one-sided tests procedure.
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1. Introduction

Since the pioneering work of WESTLAKE (1972, 1974, 1976, 1979, 1981), METz-
LER (1974) and many others bioequivalence assessment has become a broadly
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applied tool in pharmaceutical research because it allows one to prove statistically
the similarity (rather than the difference) of two formulations of a drug. Typically,
a test formulation (7)) (i.e. a new dosage form) of the active ingredient is to be
compared with a reference formulation (R) (which is usually the original manufac-
turer’s formulation already on the market). As recommended by the FDA (1992)
and other drug administrations (WHO, 1987) the experiment should be conducted
using a two period cross-over design in order to guarantee a small variability and
lack of bias. The rate and extent of absorption of the active ingredient are assessed
by pharmacokinetic parameters such as Cp,x (maximum concentration of the in-
gredient) or AUC (Area Under the blood concentration Curve).

The data are assumed to follow a lognormal distribution. Therefore, a logarith-
mic transformation is applied to each individual measurement (such as AUC) and
hence the transformed data is normally distributed with means W, or ug corre-
sponding to the test or reference formulation, respectively. This logarithmic trans-
formation reduces the problem involving a ratio of means in the original scale to a
problem involving the difference w,; — . The interest is then in testing

H:jup —pg| > A versus K : iy — e[ <A (1)

where e.g. the tolerance limit A =log 1.25 for the AUC is widely accepted by
drug authorities in order to guarantee that at least 80% and no more than 125% of
of the ingredient is absorbed in the same time. In the mean time the criterion of
average bioequivalence (1) has been criticised by various authors (cf. ENDRENYI
(1995), ENDRENYI and ScHULZ (1993), HAuCK and ANDERSON (1992), HOLDER and
Hsuan (1993), Liu and CHOW (1994), ScHALL (1995), SHEINER (1992) or WELLEK
(1993) among many others) and different bioequivalence criteria (various types of
population and individual bioequivalence) have been suggested, which have been
recognized as more reasonable for bioequivalence assessment by many authors.
This is highlighted in a recent draft guidance for industry entitled “Average, Popu-
lation and Individual Approaches to Establishing Bioequivalence” (U.S. Dep. of
Health and Human Services, Food and Drug Administration, CDER, Rockville,
MD, 1999).

In this paper, however, we focus only on the testing problem (1) because in the
mean time it has received great interest in various other fields where the assess-
ment of equivalence is of interest (see e.g. the comment about the potential use of
equivalence tests in various medical applications made by Hauck and Anderson in
BERGER and Hsu (1996), ROGERS, HOWARD, and VESSEY (1993) in psychology,
Roy (1997) in chemistry, McBRIDE (1998) for an application in environmental
statistics and the data example in Section 3 for an application in neurophysiology.)

In the following we discuss in more detail how this problem is mathematically
equivalent to one in which the observed data are (D, 6*) where D is independent
of 62 and

D~ N(0,0%) and v&*/0* ~ %2, (2)
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i.e. D is distributed according to a normal distribution with mean 0 and variance
0% and v6?/0? is distributed according to a central > distribution with v degrees
of freedom. In this formulation a simple scale transformation (devide each datum
by A) of the data allows us to always choose A = 1. Therefore, the bioequiva-
lence problem is to test the hypothesis

H:|0]>1 versus K:|0] <1, (3)

where 0 = w; — ug. This is made explicit in Section 2. Observe, that this implies
that D is an unbiased estimator for 0 and 6% is an unbiased estimator for the
variance of D.

Throughout this paper we denote vo*> = S2. The degrees of freedom v and the
variance o> depend on the particular choice of the experimental design and the
sample size [for a careful discussion of various designs see CHOW and Liu
(1992)]. Note that every two sample ANOVA model can be reduced to this set-
ting, including the two-period cross-over design. The most important special cases
are discussed explicetly in the following.

Model I (2 x 2-crossover): In the particular case of a two period crossover
design we observe (CHOW and Liu, 1992, p. 34)

Yirt = Sit + Ug + 7 + &1
Yiri = Si + Wy + 7 + €11

Yiro = Spp + Up + T + €71
YiRo = Sip + Ug + T2 + Eir2

sequence 1 {

sequence 2 {

where Y is the response of the ith subject in the kth sequence for the jth formu-
lation in which j=R, T, k=1,2,i=1,2,..., n, Y, is the fixed effect for the
jth formulation, 7; and m, are fixed period effects with m; 4+ m, = 0, Sy is the
random subject effect, €;; is the intrasubject random error in observing Y. Ob-
serve that in sequence 2 R and T are administered in reversed order, the subse-
quent definition of Vj, however, does not take this into account. To reduce this
setting to the general notation above in (2), set

_ 13
Vie = Yire — Yir) /2, Vi=1/m Y Vi,
i—1

4

1 1
UL n no
D=V,+V or=-T0 M Vi —V1)? Vo — V2)? ).
1+ Va, R l;( 1 1) —l—;( 2 2)

Under the assumption that g; are independently normally distributed with zero
mean and common variance Og, D and 07 satisfy (2) with v=rn; +n, —2 and

1 1 1
0'2:5 (l’l_1+l’l_2) 0%, OZMR_MT'
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Model 2 (parallel group design): Another example of interest is a parallel
group design where

X1, X, RN (g, 02) Yi,..., Yo % N(uy, o).
Here
1 1
np ny
D=X—-Y and o*=-"1_ T X —X)P?+5 (v, - 7)),
T ,-;( ) ;( )

1 1
Again 0% = <— + —) 0% and v = n; +ny — 2. Note, that whenever in bioequiva-
ny ny

lence testing crossover effects cannot be excluded, e.g. when the drug has a
rather long half-life, this design is more appropriate [cf. CHOW and Liu (1992),
DETTE and MuNk (1997)].

Model 3 (prepost design): Here we observe n independent outcomes

iid.
(Xla Yl)v sy (Xm Yn) ~ N((MTa MR)[’ 2)7

where D; =X; —Y;, i=1,..., n,

1

n . 1 n
D=— D; and 6 =
i=1

> (Di— D)’

" n(n—1) &5

1
and hence v =n — 1. Here 0*> = — (0% + 03 — 20xy).

The FDA-guidance (1992) recommends to conduct the two one — sided tests
procedure (SCHUIRMANN, 1987). Therefore, in this paper we call this test the stan-
dard (bioequivalence) test which is sometimes also refered to as a double-7 test
because its rejection region is the intersection of two a-level one sided t-rejection
regions for the two null hypotheses H; : 0 > A and H,: 0 < —A, respectively.
MULLER-COHRS (1990) and others [see MUNK (1993) or Hsu et al. (1994)] noted
that this test is biased, especially as the underlying variance o? increases.

The question whether a (nontrivial) unbiased test for the bioequivalence prob-
lem exists was implicitly raised in a paper by HODGES and LEHMANN (1954).
Recently, this problem was solved by BROWN et al. (1998) under some minor
constraints (cf. Section 2) on the degrees of freedom and the nominal level o. For
a discussion of the remaining cases cf. MUNK (1999a, b). Since their rejection
region contains that of the standard test [cf. Theorem 1 of BROWN et al. (1998)]
the unbiased test is always more poweful than the standard test. Moreover, a nu-
merical comparison of the power functions shows that this test sometimes exhibits
a noticeable improvement on the double ¢ test (see also Figure 2 in Section 2).
Unfortunately, the shape of the critical region of the unbiased test has some prop-
erties which do not seem reasonable from a practical point of view.

In the following, we summarize the objections of many colleagues to use of the
unbiased test. We mention that these are objections against the use of this fest, not
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objections against the formulation of the testing problem, as briefly discussed in
the Introduction. In particular, when this test was presented by Hwang in an in-
vited session at the ASA Annual meeting on Bioequivalence, 1993 in San Francis-
co and by Munk at the Conference on Statistical and Regularory Issues on Bio-
equivalence, 1995 in Diisseldorf the subsequent discussions motivated us to
recommend a modification of the unbiased test procedure which will be presented
in the next Section of this paper. In summary, it was suggested that the following
five requirements concerning the shape of the critical region should be satisfied:

R1. Every average equivalence test (D, S) should be symmetric in D, i.e.
@(D, S) = @(—D, S), where ¢ denotes the critical function of the test.

R2. Every average equivalence test should be D-homogeneous, i.e. the critical
region conditioned on § =s should be a (possibly degenerate or un-
bounded) interval in D.

R3. Every average equivalence test should be S-homogeneous, i.e. the critical
region conditioned on D =d should be a (possibly degenerate or un-
bounded) interval in S.

R4. The critical region of an average equivalence test should be D-bounded,
1.e. for any S, the D-coordinate should be entirely contained in an interval
[—dy, do], where dy < oo is a prespecified bound. A good choice for dj is
dy = A, which means that we never decide for equivalence whenever the
magnitude of the UMVU-estimator D is larger than the equivalence limit.
In this case, the rejection region is said to be A-bounded.

RS. Finally, the test should be S-bounded. This means that the hypothesis
should not be rejected for s too large. This requirement is intended to force
the experimenter to keep small the variability of the experiment.

We will comment on these properties.

R1. Without any doubt, the restriction to symmetric tests is very natural from
two points of view. Firstly the testing problem (3) remains invariant with respect
to the group of reflections at O = 0 which induces the same invariance property
for (-, S). Secondly the decision of the test should remain invariant under relabel-
ling of the treatments in any two sample design.

R2. For symmetric tests D-homogenity is equivalent to the following: If we
declare average equivalence for some D = d then we will do the same for all d’s
with smaller absolute value, when observing the same s. In particular, this prop-
erty guarantees that whenever a test for the equivalence problem is similar it is
also unbiased.

R3. If a test is not S-homogeneous, we allow for assessing average equivalence
for D = d when observing a large value of the standard deviation s = /v 0, say
s3 or a small value s; while for an intermediate estimation of the standard devia-
tion s, average equivalence cannot be concluded. To some colleagues this property
seems unreasonable and undesirable.
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R4. This requirement seems to be reasonable because otherwise the statistician
is left in the paradoxical position of rejecting H : |6) > A while at the same time
estimating a value 0 by the value |D| > A. See also SCHUIRMANN (1987) for a
careful discussion of this property. Asymptotic theory will also require that when
v (and hence the sample size) approaches infinite every consistent (sequence) of test
(s) will never allow for rejection for values of D, s.t. |[D| > A.

RS. It is argued, that if the variability is large (which is indicated by a large
observed s) we reject the hypothesis only because we are allowed to exhaust the
given type I error although there may not exist much evidence in the data to
prefer the alternative. It can even be shown that there exists no equivalence test
for (1) with a larger power than the nominal level o when the variance tends to
infinity. In other words, in this case the information provided by the data becomes
arbitrary small. Although plausible from the above reasoning, RS is finally not
shared by us. This will become clear in Section 3 where we illustrate in an exam-
ple some unappealing implications of S-boundedness. Observe in particular, that
the classical #-test could not be applied if we accept objections of type RS5. For a
similar argument see also BERGER and Hsu (1996).

Tests which fulfill R1. and R2. will be called symmetric D-homogeneous. Cer-
tainly, these requirements are so convincing, that we do restrict our considerations
in the following solely to these tests.

The aim of this paper is twofold. First, we prove that a symmetric D-homoge-
neous unbiased test cannot have any of the properties R3.—RS5. (c.f. Theorem 2.1).
Secondly, we suggest a (biased) modification of the unbiased test which fulfills
the requirements R1.—R4. but sill noticeably improves on the standard test. This is
then illustrated by an example.

The paper is organized as follows. In the next Section we present the unbiased
test ¢, of BROWN et al. (1998) and three (biased) modifications. These tests are
strictly ordered in the sense that their critical regions are decreasingly ordered, and
hence their power functions are also descreasingly ordered. The test ¢, is uni-
formly more powerful than all the other tests. However, this test does not fulfill
any of the requirements R3.—RS5. The first modification ¢, of the unbiased test is
A-bounded but neither S-homogeneous nor S-bounded. The second modification
g 1S A-bounded and S-homogeneous but not S-bounded. Finally, we investigate
a test (g Which has all three properties. A numerical investigation shows that
the loss in power of all these modified tests compared with the unbiased test is
neglegible. The only exception is the S-bounded test, which improves only slightly
on the standard test. Hence each of the other tests may improve significantly on
the standard test. Nevertheless, it turns out that for large power values (such as
B =0.8 or 0.9) all tests almost the same power as the standard test. In particular,
this indicates that we cannot hope to reduce the sample size for planning a power-
ful average equivalence study by using tests alternative to the standard procedure.
Nevertheless, the use of one of these tests may become still favourable as is illus-
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trated in an example in Section 3. In this example the standard test does not lead
to the conclusion of equivalence although there is strong evidence of this because
the difference of the means is estimated as nearly O.

In summary, we recommend the use of the S-homogeneous but S-unbounded
modification @,g. This represents a good compromise between a test which is still
powerful and one with an appealing critical region.

Those readers who are interested in performing the presented tests can obtain
the SAS-IML code for the iterative construction of the critical region from the first
author on request. Additionally, ascii-files containing the critical rejection region
are available on the world-wide-web under HTTP://WWW.RUHR-UNI-BOCHUM.DE/
MATHEMATIK3/MUNK.HTLM

2. The Unbiased Test and Modifications

The standard test. We start with a brief description of the standard test (SCHUIR-
MANN, 1987). This rejects the hypothesis of nonequivalence (and thus councludes
that equivalence holds) whenever

A> D]+ 1146, (4)

where t;_, denotes the upper 1 — a-quantile of a central ¢-distribution F, with v
degrees of freedom. Sometimes this test is referred to as the confidence interval
inclusion rule [MANDALLAZ and MAU (1981)] because we can represent the critical
region (4) as those values of (D, S) for which the symmetric confidence interval
[D —t;_40, D + t;_40] is entirely contained in the equivalence region [—A, A].
From this representation it is obvious that ¢, fullfills all the requirements R1.—-R5.
See BROWN, CASELLA, and HWANG (1994), Hsu et al. (1994), BAUER and KIESER
(1996) and BERGER and Hsu (1996) for a general discussion of such rules. As
mentioned in the introduction this test is always biased. In particular, the power
function tends to zero for increasing variances, independently of the mean 6.

The unbiased test. BROWN et al. (1998, Sect. 4, 5) suggested an unbiased test
@,. This was shown to be uniformly more powerful than the standard test. The
unbiased test is D-homogeneous. Its critical region can be written as

Cu={(D, 0) : ID/A] <f(6/A)}

where f(-) denotes a function which has to be evaluated iteratively by numerically
computing the solution to equation (4.11) in (BROWN et al., 1998). Note, that the
construction of this unbiased test is only valid for large enough values of the
nominal level o and degrees of freedom v. For example, when o = 0.01, 0.025,
0.05, 0.1 we require at least v=29, 6, 5, 3 degrees of freedom [cf. Table 1 in
BROWN et al. (1998)]. When we consider a two period crossover design (cf. model I)
with equal sample sizes n; = n, = n in each sequence these degrees of freedom
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would correspond to a required sample size of n = 6, 4, 4, 3. Therefore, this con-
straint is certainly quite minor in any practical application. Note, that in the re-
maining cases for small degrees of freedom different constructions were suggested
by MUNK (1992, 1999a, 1999b) and BERGER and Hsu (1996) which improve on
the standard test.

An algorithm of the construction of the unbiased test is carefully described in
(BROWN et al., 1998) and an implementation in SAS-IML can be obtain from the
authors on request. The numerical effort for the iterative computation of the
boundary function f is considerable. Therefore, we display in Appendix B the
boundary functions f of the critical region C, for various degrees of freedom v at
a nominal level a = 0.05, where D > 0. The region for negative D is obtained by
reflection. We remind the reader that in these plots we are assuming A = 1. To
apply these figures in sitations involving other values of A the data must be appro-
priately rescaled. The rejection region is the region between the G-axis and the
graph of the boundary function f (solid line). The dashed line denotes the bound-
ary of the critical region of the standard test. These coincide with the critical
region of the unbiased test (solid line) for small values of G. Observe, that the
critical region of the unbiased test entirely contains the critical region of the stan-
dard test.

The figures involve only degrees of freedom v with v < 30 because asymptoti-
cally as v — o0, a good approximation for the critical region of the unbiased test is

[Fv((D = A)/6) = F\((-D = A)/6)| < @ (5)

which was suggested as a test for the bioequivalence problem by ANDERSON and
Hauck (1983). For small samples the actual level of this test exceeds the nominal
level significantly. In the large sample case (v > 30) we draw from Frick (1987)
that the approximation of the nominal level is quite accurate. We found numeri-
cally in accordance with the table presented in FRICK (1987) that the size of this
test satisfies

sup ay(0) <0.055 if v>30,

>0

which is certainly acceptable for practical purposes. The critical region of the
unbiased test can be approximated for large values of G (6> > 2A?) by the straight
line 6 = |D|/ty (14+a)» Which follows from the formulas (4.12) and (4.13) in
BROWN et al. (1998). This allows us to finish the figures for large values of G.

In the following we will describe the above mentioned tests explicitely. All tests
are performed as follows. For a given equivalence bound A for the absolute value
|6] of O =E[D] start with a transformation of the observed (D, G) into
(ID|/A, 6/A). Hence we may assume A =1 and in the following we denote
these transformed values again as (D, G) as long as no confusion is possible.
Then choose the degrees of freedom v in accordance to the particular model (e.g.
Model 1, 2 or 3) and apply the corresponding figure in Appendix B.
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The A-bounded test. If one decides for the use of a A-bounded test we sug-
gest to cut off the critical region where |[D| > 1. (This part of region is not dis-
played in the figures because in this case we may use the asymptotical straight
line 6 = |D|/ty (14q)/2)- This describes the test ,.

The S-homogeneous test. We now construct (. Consider for the moment
only those cases where v > 13. Let D* denote the smallest D on the boundary of
the critical region of the unbiased test. Denote the corresponding value of & as 6™
(cf. Figure 1).

To obtain the S-homogeneous test ¢, ¢ simply remove the points in the rejection
region of ¢, which are beyond the vertical line trough (D, 6™). Hence, ¢, equals
@, if6< 6" and

@A Tejects if and only if D < D, whenever 6 > 6™
Observe, that the S-homogeneous modification is also A-bounded.

The S-bounded test. Finally, we obtain an S-bounded test ¢, g¢ When the rejec-
tion region is additionally truncated at & = 6™. Hence this test equals ¢ As With the
following exception:

@ g5 does not reject for 6 > 6™ .

Note that this test is also S-homogeneous and A-bounded. However, as mentioned
in the Introduction we do not share the position of some colleagues that S-bound-
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4
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edness is a necessary condition for an equivalence test to satisfy. This is in accor-
dance with the reasoning of BERGER and Hsu (1996). Note further that any S-
bounded modification is somewhat subjective in determining the cut off point.
For example, when v = 13, the corresponding S-homogeneous test p g rejects
according to the figure as long as D < 0.1 if 6 > 0.85. If 6 < 0.85 the rejection
region remains the same as that of the unbiased test. Finally, the S-bounded test
equals ¢, as long as 6 < 0.85 but never rejects for 6 > 0.85.

If v < 12 we found numerically (which is reflected by the figures in Appendix B)
that the above described procedure does not necessarily lead to S-homogeneous mod-
ifications. Here an S-homogeneous modification can be obtained when one rejects in
the union of the critical region of the standard test and the rectangle |D| < D*. One
could also use the lower envelope of the boundary of the unbiased test. However, in
practical applications degrees of freedom < 13 certainly occur very rarely.

We mentioned before that the unbiased test [as well as the test suggested by
ANDERSON and Hauck (1983)] although being symmetrical D-homogeneous, fails
to satisfy the conditions R3.—R5. The following Theorem shows that each of these
conditions even contradicts the property of unbiasedness.

Theorem 2.1: Assume the setting (2) of the average equivalence problem (3).

1. No unbiased test for the average equivalence problem is S-bounded or D-
bounded.

2. Any symmetrical unbiased D-homogeneous critical region with o < 1/2 is
not S-homogeneous.

(For the proof see Appendix A).

The Theorem shows an interesting and perhaps suprising fact that unbiasedness
— although reasonable from a formal statistical point of view — contradicts the
requirements R3.—R5. The implications of this result are serious. The same com-
ments would of course apply to any UMP or UMPU test if these optimal tests
exist (which is still an open problem).

On the other hand there is no reason to prefer the two one sided ¢ tests proce-
dure when better tests are available which fullfill R3.—R5. Recall, that all modifi-
cations suggested above are uniformly more powerful than the standard procedure.
We have performed an extensive numerical study where the power functions of all
these tests are evaluated for various degrees of freedom v and levels o by means
of a Gaussian quadrature formula as is described in (BROWN et al., 1998, Sect. 3),
which was controlled by a Monte Carlo simulation with 10000 replications in
each setting. The power function was evaluated at 6 =0, 0.1, ..., 1.5 and the
figures were obtained using cubic spline interpolation. Note, that for the numerical
calculation of the power and hence of the required sample size when planning an
experiment it is convenient to write the power function of any of these tests as

Po.c (D] < £(5)) = T {o ("=0) o (=00,

o
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Here PS5 , denotes the distribution of S with density of R*

B (1/2)\//271
gV,G(s> - F(V/Z)

and @ denotes the cdf. of a standard normal random variable.

To be brief here we display in Figure 2 only the power of the tests standard
test, the unbiased test the S-bounded test and the S-homogeneous test as a func-
tion of |0| for the case v=7, 12, 22 and o =0.05 at 6 =1/3,1/2,2/3,3/4
where A = 1. Figures for the A-bounded test are supressed (because its shape and
power is very closed to the unbiased test). Power figures of this test can also be

2
exp <—%+(v— 1)10gs—v10g0>
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Fig. 2. The power functions of the unbiased trest (dashed line — — —) the S-homogeneous modifica-
tion (dashed/dotted line — - —), the standard test (solid line ——) and the S-bounded test (dotted

----- ) where v =7, 12, 22, oo = 0.05 and 0 = 1/3, 1/2, 2/3, 3/4. The x-axis is labeled by |0|
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found in BROWN et al. (1998). Note, that the power surface of each test $(0, o) is
always unimodal in the first coordinate with maximum at 0 = 0 and a decreasing
function in the second coordinate.

Our numerical results may be summarized as follows. Provided o/A <« 0.4
(here always A = 1) we find that all tests have approximately the same power.
When 0/A becomes larger the maximum deviation between the power function of
the unbiased test and that of the standard test increases where we observed a max-
imum difference of 0.12 at 0 = 3/4, v =22. We could not find larger difference
for other degrees of freedom and variances 2. For variances o° tending to infinity
the unbiased test improves on the standard test by an amount of a because the
power of the last named test converges to 0. The S-bounded test @, is always
very close to the standard test, whereas the S-homogeneous test improves signifi-
cantly in power on the standard test provided o is not too small. Here, we have
chosen the above described modification of the S-bounded test which is also S-
homogeneous. Recall, that for v small, this is not necessarily the case. Of course,
larger choices of truncation lead to more powerful tests. Note, that the actual level
and the power of all test, besides of the unbiased test, tends to 0 if 0 — oc.
Finally, it is interesting to note that the parameter o (actually o/A, but here
A = 1) serves as a rather good indication of the amount of power for any of these
tests, independently of v. Recall that 02 is the variance of D, the unbiased estima-
tor of 0 and hence depends on the sample size via the particular model (cf. model
I-III in Section 1).

Discussion. These observations suggest to prefer the S-homogeneous (and A-
bounded) test ¢, ¢ because it fullfills requirements R1.-R4. and its power im-
proves significantly on that of the standard test for those parameters of the alter-
native where the variance is not too large or not too small. Moreover, the addi-
tional improvement in power which wouls result from using the unbiased test or
the A-bounded test is suprisingly small. Hence we are not in the difficult situation
that we are led to use this test (recall that its critical region violates R3.—R5.) by
means of its great superiority in power.

Sometimes it is argued that the obtained power improvement by the unbiased
test or one of its modifications such as ¢,¢ on the standard test is irrelevant. The
basis of this argument is the assertion that the power function 3 of a well planned
experiment should be rather large, say B > 0.8, because only in these cases we are
interested in the required sample size in order to guarantee a preassigned probabil-
ity of type II error. But in this realm the decision of ¢, and @, say, will agree
with high probability and the tests will have almost identical power. However, in
practice experiments are sometimes performed in which the power is smaller than
this ideal and in which ¢, and the above discussed tests may well differ in power.
This can for example result from poor overall planning or from properly deli-
neated planning which is, however, based on incorrect a-priori estimates of the
relevant parameter or in situations where time or cost compel experiments with
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smaller power than this ideal. The following example describes a recent experiment
in which the modifications of the unbiased test notably differ from the standard test.
Moreover, this examples illustrates that it is not always reasonable to measure the
improvement on a test solely by means of comparing the power functions.

3. Example

The essential drawback of the standard test procedure is illustrated by the follow-
ing example. Observe, that this transfers directly to the bioequivalence setting.

STEINHOFF, FANGMEIER, and PAULUS (1995) investigated the influence of epi-
lepsy on exteroceptive suppression (ES) of temporalis (chewing) muscle activity.
They compared the ES of muscle activity of 31 epileptic patients and 20 normal
controls where measurements were taken from each subject at the left and right
temporalis, respectively. It was conjectured that ES is not a suitable method to
discriminate between epileptic and non — epileptic subjects. Therefore, it was
considered as appropriate to perform an equivalence test.

The results are displayed in Table 1. Here x denotes the sample mean and sde the
sample standard deviation in each group for the left and right muscle, respectively.
Also let sder denote the observed standard deviation of the data obtained by aver-
aging the measurements of the right and left temporalis of each person. See Table 1
for the summary statistics. We were particularly interested in the following:

I. We want to compare the response of normal and epileptic persons based on
the averaged data of the right and left chewing muscle, respectively. Comparing
the standard deviations in each group justifies the assumption of homogenity of
the variances. Assuming Model 2 in the Introduction we obtain the pooled total
standard deviation as 10.972 (not displayed in the table) and estimate the mean
difference as d = Zzp — 7z = 42.94 — 42.195 = 0.745. Here v = n; + n, — 2 = 49.
Therefore we may apply the approximation in (5). To compare the tests discussed
in the last section we evaluate for each test the smallest equivalence bound A™ for
which the hypothesis H : |0] > A™ is rejected given the outcomes (d, sder), i.e.

1/2
A*(d, sT)::inf {A:(p(d/A, <1—|—1> sdeT/A> = 1},
n ny

Table 1

Means and standard deviations of the muscle activities at the right and left temporalis of
epileptic and reference patients

right nerve left nerve total mean
mean/st. dev. X sde X sde sder
Reference (n; = 20) 43.10 9.23 42.78 10.33 9.255 42.94

Epileptic (n, = 31) 42.93 11.88 41.46 12.18 11.67 42.195
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We obtain from (4) that A* = 6.02 for the standard test whereas the unbiased test
(and the modified tests ,, Pag, Pags) allow to conclude equivalence when
A* =5.17, which is <10% of the range of the estimated means.

IL It was also of interest to show that there is no difference in ES between the
right and left temporalis in the control group. Observe, that this corresponds to
model 2 in Section 1. Therefore we evaluate the estimated mean difference as
Xg(ry — Xgq) = d = 0.32 and we draw from Table 1 the pooled standard deviation
as sy = 9.255. Further v=mn; — 1 =19. Now we obtain for the standard test
A" =39 and the other tests allow for assessing equivalence at the bound
A*™ =2.97. The situation becomes more drastic when d trends to zero, e.g. as-
sume that we had observed d = 0.1. Then we would obtain A™ = 3.68 for the
standard test but for the unbiased test A* = 0. This reflects that the unbiased test
is in fact not A-bounded. The S-bounded test leads to A* = 2.31 and the S-homo-
geneous test gives A* = 1. Here a reduction of the equivalence limit of more than
75% can be obtained by using the S-homogeneous test instead of the standard
test!

4. Conclusions

The observations in the last example can be explained as follows. Whenever the
estimated standard error is too large (which happens with high probability when o
is large, of course), the S-bounded test and the standard test ¢, never reject H
even for d = 0 (cf. case II in the last example). In part II of Example 3 it was
found that the sample standard deviation in each group is only ~1/4 of the means
(and hence there is no indication that the true variance is unusually large, i.e.
argument R4. of Section 2 does not apply) and we obtained for the scaled differ-
ences of the means d/s ~ 1/30. Therefore, in case II of the last example it be-
comes apparent that the data may give reason to decide for equivalence although
the estimated standard deviation is rather large relative to the estimated difference
average. In other words, in this example the standard deviation appears to be large
because the mean difference was found to be unexpectedly small. Therefore, the
S-bounded modification and the standard test were found to be insufficient.

In summary, we draw from this example that it is reasonable to seek to improve
on the standard test even though we cannot achieve a noticeable difference in
power for large values of the power function {3, larger than 0.8 say. In particular,
we found that one can reject for a much larger range of D values than the stan-
dard test without contradicting requirements R1.—R4. Taking into account this ob-
servation and the discussion in Section III we finally recommed the S-homoge-
neous test (g as a compromise between a test which allows for concluding the
equivalence for large values of the sample variance whenever D/A is small but
with an appealing critical region from a practical point of view.
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As pointed out by a referee good statistical practice should entail more than
reporting on a pure test decision (whatever the underlying test is). Therefore, it is
considered an advantage of the TOST that it automatically forces us to compute a
(1 — 2a)-confidence interval. Furthermore, P-value are easy to obtain.

We mention that the same holds for the S-homogeneous test, too. Interestingly,
a confidence interval can be obtained by inverting the acceptance region (cf. LEH-
MANN (1986) for a description of this method) of the S-homogeneous test. To this
end let A;(A) denote the acceptance region of the S-homogeneous test conditioned
on § = s for a fixed boundary value A of the hypothesis. Then

C(D) = {0: D € A,(0), |0] > 0}

defines a confidence interval around D with confidence level 1 — a. We mention
that it can be seen easily that this confidence interval is uniformly shorter than the
1 — 2a confidence interval associated with the TOST. To this end simply recall,
that the rejection region of the TOST is entirely in that of the S-homogeneous test
for any A. Furthermore, note that given S = s the resulting interval is simply con-
nected and symmetric around D due to the S-homogeneity. This property fails to
hold for the confidence interval associated with the unbiased test, which reflects
again the unapealing shape of this test. We will, however, not pusue this topic
here and postpone a more detailed discussion to a subsequent paper.
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Appendix A: Proofs
We start with a technical Lemma which will be used in the proof of Theorem 2.1. Let
C denote the closure of a set C C R?, i.e. the smallest closed subset containing C.

Lemma A.1.: Let C be the critical region of an unbiased test at level o.> 0 for
the bioequivalence problem. Then we have (A, 0), (—A, 0) € C.

Proof: Assume (A, 0) ¢ C. Then there exists an open, nonempty neighborhood
U of (A, 0) with the property

unc=>0. (6)
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This leads to
lim Py o(U) = 0(g,0)(U) =1, for 0=A,

c—0
where O,(-) denotes the dirac measure at x. Finally, we obtain from (6) that
lin%) P, (C) = 0 which contradicts the unbiasedness.
o— ’

Lemma A.2.: Assume that C is S-homogeneous and symmetric D-homoge-
neous. If (dy, s1) and (dz, s2) € C, s.t. di < dy, 51 < 57, then the rectangle

{(d,s):0<d<d, sy <s<s}CC.

Proof: By symmetry and D-homogeneity it follows that the range of D for a
given S = s is empty or it forms an interval containing 0. Hence the line segment
joining (0, s2) and (da, s2) is included in C. This implies that (d,, s2) is in C.
Finally by S-homogeneity, the line segment joining (d;, s,) and (di, s1) is in C.
By D-homogeneity again, the rectangle is in C.

Proof of Theorem 2.1:
1.) We shall first show that an unbiased rejection region C cannot be Sy-
bounded. Otherwise as 0 — 0o

S2
PG,O(C) < PG,O(S < SO) =Py <X2 < 0_(;) -0

where 2 is a %*> random variable with v degrees of freedom. This shows that the
rejection probability at 0 = A cannot be «a, contracting the unbiasedness of C.
Similarly, C cannot be Dy-bounded. Otherwise as 0 — oo

Po.o(C) < P(ID| < do) = ® <d°;6> _o <—d0:6> 0

where @ denotes the cumulative distribution function of the standard normal dis-
tribution. This again contradicts the unbiasedness of C and hence C cannot be dj-
bounded. 1

2.) Under the assumptions that 0 < a < 5 and C is unbiased symmetric D-

homogeneous, we shall prove that C is not S-homogeneous. Suppose that C is S-
homogeneous. We shall show that this leads to a contradiction. We work with C
first, which can be shown by using Lemma A.2 to be D-homogeneous and S-
homogeneous since C is. Also since C is not d-bounded, neither is C. Since C is
not D-bounded, there exists s« > 0 and d« > A such that (ds«, s«) € C. (Note that
if s5; is always zero for d; > A, the region C is basically d-bounded almost surely
and have zero probability as 0 — oo by an argument similar to 1.). This implies
that C also has zero probability as 0 — oo, contradicting to the assumption that C
is unbiased.) Also from Lemma A.1, (A, 0) € C. Now by Lemma A.2,

{(d,s):0<d<A0<s<s«}CC,
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which implies that (A, 0), (A, sx) € C. Returning to C, there exist two sequences
(dyn, sn) and (d., s) in C such that they approach (A, 0) and (A, sx) respectively,
1.e., a8 1 — 00

(dn, sn) — (A, 0)
and
(d,s) — (A, sx).
Lemma (A.2.) then implies that
{(d,s):0<d<min(d,, d,), and min (s, s,) <s<max (s, s,)} CC.
Letting n — oo concludes that
{d,s):0<d<A and 0<s<s*}cCC,

and hence

P(C)>PO<D<A)PO<s<s"
1
= P(ongA)P(ogs<s*)—>E as 0—0.

. . . 1
This contradicts to the assumption that o0 < —.
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Appendix B
The critical regions of the unbiased test for o = 0.05 and A =1 in the (D, 0)-

plane where v =15, 7, 9, 11, 13, 16, 20, 24
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